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1. Introduction 

This document describes the Bayesian modelling methods used to estimate 

epidemiological measures for small areas such as Local Government Areas (LGAs) 

and Health Districts (HDs) for the Western Australian (WA) Public Health Atlas (PHA). 

1.1 What is Bayesian modelling?  

A Bayesian model is a statistical model that uses probability to represent uncertainty 

within the model, both the uncertainty regarding the output (e.g., estimated 

disease/risk factor prevalence, counts, age standardised rates, age group specific 

rates and standardised rate ratios) and the uncertainty regarding the input (e.g., raw 

data and parameters such as socioeconomic status, remoteness, and service 

accessibility) to the model. 

Compared to conventional small area analysis methods, Bayesian methods have the 

following advantages: 

 With the inclusion of prior distributions (i.e., existing evidence), researchers can 

include structured assumptions about spatial and temporal relationships to 

improve estimation where there are not enough cases to derive reliable 

estimates. Traditionally if there is insufficient data, estimates for the area would 

not be reported. 

 Gaps in data can be filled where the issue of reliability using conventional 

methods to derive epidemiological measures has not been solved. 

 Level of uncertainty can be reported for the measures/indicators for an area 

(this usually cannot be reported using conventional methods).  

 Different models can be fitted based on different measure characteristics.  

1.2 Levels of geography modelled using Bayesian methods 

In areas with small population sizes and disease/condition counts, reliable 

epidemiological measures cannot be derived. This is the case for some LGAs and 

HDs within WA. To produce small area estimates with increased stability and certainty 

at the LGA and HD levels, Bayesian spatio-temporal modelling was used to obtain 

estimated disease/condition counts (modelled/fitted counts, not observed values) to 

derive associated epidemiological measures.  
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Due to the ready availability and high reliability of data and measures at Health Region 

(HR) and State geographical levels, measures presented at these levels were not 

derived via Bayesian modelling but computed directly using observed 

disease/condition counts to calculate associated measures.  

 

2. Data and model types 

Three types of data (administrative data, survey data, and burden of disease (BOD) 

data) were modelled using Bayesian methods and are presented in the PHA. For a full 

list of indicators presented in the PHA for each data type, please refer to the PHA Data 

Dictionary.  

Please see Section 4 (Interpreting model output) for further information on (i) 

understanding the difference between a credible interval (CI) and a confidence 

interval, and (ii) interpreting the ‘Comparison to State’ measure, both of which are 

mentioned in the following section. 

Additionally, please refer to the Appendix for mathematical notations used in this 

document. 

2.1 Administrative data 

Administrative data includes all indicators other than those mentioned in the HWSS 

and BOD sections of the PHA Data Dictionary. It includes indicators such as potentially 

preventable hospitalisations, tobacco-related hospitalisations, and hospitalisations 

due to injury and poisoning, among others, sourced from the WA Hospital Morbidity 

Data Collection (HMDC) as well as aetiological fractions derived by the WA 

Department of Health Epidemiology Directorate. It also includes death data from the 

WA Mortality Dataset and cancer incidence data identified through the WA Cancer 

Registry.  

Key measures reported in the PHA for administrative data include modelled counts 

(with associated 95% CIs for modelled LGA and HD level data), Age Standardised 

Rates (ASRs) and associated 95% CIs for LGA and HD data and 95% confidence 

intervals for HR data, and Age group Specific Rates (ASPRs). Another key measure 

reported in the PHA is a ‘Comparison to State’ of disease/condition rates. For LGA 
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and HD level data the comparison to State is based on the exceedance probabilities 

(EPs) of the posterior draws (i.e., samples), to identify whether the disease/condition 

ASR is higher, lower, or similar between the specific LGA/HD compared to the State 

ASR. For HR level data, the comparison to State is based on the Standardized Rate 

Ratio (SRR) values which were calculated using raw unmodelled counts for the 

specific HR. For more information on interpreting the comparison to State variable, 

please refer to Section 4.2. Raw unmodelled data at the HR level was suppressed in 

the following cases: (i) if the count was less than 6, the count was suppressed to 

protect privacy and data confidentiality, (ii) if the count was less than 20, the ASRs 

were suppressed because the derived rates were unreliable, (iii) if the count was less 

than 5 the ‘Comparison to State’ variable was suppressed because the derived 

estimate was unreliable. Administrative data at the HR level also included data by 

Aboriginality and combined years (2011-2015, 2016-2020 and 2011-2020). Table 1 

below outlines what measures are displayed in the PHA by geographical level.  

Table 1. Administrative data measures presented in the PHA by geographical 
level 
Geography Level Measures (by area, year, and sex) 

LGA 

Modelled count and 95% CI 

ASR and 95% CI 

ASPR  

Comparison to State (based on posterior draw EPs)  

HD 

Modelled count and 95% CI  

ASR and 95% CI 

ASPR  

Comparison to State (based on posterior draw EPs)  

HR 

Measures (by area, year/combined years, sex, and 
Aboriginality) 

Raw count (counts <6, were suppressed) 

ASR and 95% confidence interval (ASRs where count <20, 
were suppressed) 
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ASPR 

Comparison to State (based on SRR 95% confidence interval) 
(Comparison to State where count <5, were suppressed) 

 

Bayesian modelled measures for LGA and HD level data were derived from the 

modelled counts obtained using a spatio-temporal (ST) model, which for identification 

purposes, was named ASRA_ST (Age Standardised Rate by Age Spatio Temporal 

model). This model was used to estimate counts, which were then used to calculate 

ASRs, ASPRs and the associated credible intervals for these measures, after 

adjusting for spatial and temporal variations. To reiterate, please note the ASRs and 

ASPRs were not estimated directly via the modelling process, but rather the counts 

(both age group specific and total counts) were estimated via the modelling process 

and subsequently ASRs/ASPRs were calculated based on these modelled/fitted 

counts. 

The input data required for this model included both population estimates and raw 

counts by area, year, and age. The output data was the modelled/fitted counts by area, 

year, and age, which were then used to calculate ASRs/ASPRs accordingly.  

Separate models were fit for males and females for each disease/condition. The 

modelled counts from these two models were then combined to calculate modelled 

counts and derive associated measures for persons. The equation and output 

measures for the model are presented in Table 2, and notations explained in Appendix 

Table A1. Further detailed calculation processes can be found in the deliverable 

document by Hogg & Cramb (2022) (see link in Section 7) specifically produced for 

this project. Note the space-time interaction term (𝛿𝛿𝑖𝑖𝑖𝑖) is absent in the ASRA_ST model 

equation as it was removed due to convergence issues (as mentioned in Section 3.2).  

Table 2. Administrative data model equation and output measures presented in 
PHA for LGA and HD level data 

Model Equation Output measure in PHA (by area, 
year, and sex) 

ASRA_ST 
Modelled count (𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖) with 95% CI 

ASR with 95% CI 
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log 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = log(𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖) + 𝛼𝛼
+  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜃𝜃𝑖𝑖
+ 𝛾𝛾𝑡𝑡 

ASPR  

Comparison to State  

 

For administrative data where aetiological fractions were applied (e.g., alcohol, drug, 

tobacco related hospitalisations/deaths), a gamma distributed variable was used 

instead of a Poisson variable to allow for non-integer counts. There was a strong 

multiplicative relationship between age group and population size for some 

combinations of geography and age group. To allow the model sufficient flexibility to 

accurately model counts for these combinations (alcohol deaths at the LGA level, 

tobacco deaths at the HD and LGA levels and tobacco hospitalisations at the HD level) 

an interaction term between age group and population was added. This prevented 

significant over or under estimation of total counts for these conditions which occurred 

with the additive model.   

2.2 Survey data 

Survey data consists of data obtained from the WA Health and Wellbeing Surveillance 

System (HWSS). It includes indicators related to lifestyle behaviours such as current 

smoking, and alcohol consumption at levels considered high risk for long-term and 

short-term alcohol related harm, among others. A full list of survey data indicators 

included in the PHA can be viewed in the PHA Data Dictionary in the HWSS section.  

Key measures reported in the PHA for survey data include prevalence by area, year 

and sex, and prevalence by age group with associated 95% CIs for modelled LGA and 

HD level data and associated 95% confidence intervals for HR level data. Please note, 

prevalence measures with a Relative Standard Error (RSE) greater than 50% or a 

prevalence of zero (for HR level data) were excluded and not presented in the PHA 

due to privacy policies, or to withhold an unreliable prevalence value (see Hogg & 

Cramb (2022) for further information on modelled RSE). Additionally, a ‘Comparison 

to State’ measure is reported. For LGA and HD level modelled data the comparison to 

State is based on the EPs of the posterior draws, to identify whether the prevalence is 

higher, lower, or similar between the specific LGA/HD compared to the State. For HR 

level data, the comparison to State is based on evaluating the 95% confidence 

intervals of the HR with the State prevalence. For more information on interpreting the 
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comparison to State variable, please refer to Section 4.2. Table 3 below outlines what 

measures for survey data are displayed in the PHA by geographical level.  

Table 3. Survey data measures presented in the PHA by geographical level 
Geography 
Level Measures (by area, year, and sex) 

LGA 

Modelled prevalence with 95% CI 

Modelled prevalence by age group with 95% CI (by area and 
year only) 

Comparison to State (based on posterior draw EPs)  

HD 

Modelled prevalence with 95% CI  

Modelled prevalence by age group with 95% CI (by area and 
year only) 

Comparison to State (based on posterior draw EPs)  

HR 

Raw prevalence with 95% confidence interval 

Raw prevalence by age group with 95% confidence interval (by 
area and year only) 

Comparison to State (based on prevalence 95% confidence 
interval comparison of HR and State)  

 

The Weighted Multilevel Regression and Poststratification (WMrP_ST) model was 

used for survey data. The same WMrP_ST model is also used for BOD data described 

in the next section. Note that all survey measures are binary (i.e., yes, or no) and the 

WMrP_ST model is a logistic model where the dependent variable is a binary outcome 

measure (e.g., current smoker or not). The advantage of this model is that it 

incorporates survey weights into the model. The input data required for this model 

included individual level survey data, post strata data (all unique combinations of the 

covariates used in the model and census populations), and raw survey weights 

available from HWSS data. Note that the model itself did not output counts, but 

probabilities for the sampled individuals. It was only after the model parameters were 

used to predict probabilities for the post strata data that counts could be derived. The 

counts were then converted to prevalence.  The equation and output measures for the 

model are presented in Table 4. 
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Table 4. Survey data model equation and output measures presented in PHA for 
LGA and HD level data 

Model Equation Output measure in PHA for all (by area, 
year, and sex) 

WMrP_ST* 

 

logit(𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗) = 𝛼𝛼
+  𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝛽𝛽
+ 𝜃𝜃𝑖𝑖
+ 𝛾𝛾𝑡𝑡 

Modelled prevalence with 95% CI  

Modelled prevalence by age group with 95% 
CI (by area and year only) 

Comparison to State  

* In deriving the probability of having a specific outcome/risk factor (e.g., smoking or 

alcohol drinking), a variety of event-level (i.e., individual record for those surveyed) 

and area-level fixed effect factors below are included in the modelling.  

• Event-level factors:  

 Age group * sex interaction term 

• Area-level factors: 

 Total proportion of female population  

 Remoteness (Note: HD models do not have the remoteness covariate) 

 Socio-economic disadvantage  

 Indigenous population proportion  

 Proportion of people with low income  

 Proportion of people with tertiary education  

 Proportion of population with occupation as labourer or other manual 

workers  

 Total proportion of males aged 35-39 years  

 Total proportion of females aged 15-19 years  

Note that the fixed term factors can be changed according to the health condition/risk 

factor and be determined by running ordinary least square regression models and 

assessing their statistical significance in relation to outcome/risk factor measures. 

These factors are not included in the ASRA_ST models used for administrative and 

BOD data as these data types do not have event level data like survey data, where 

each record represented a person surveyed. ASRA_ST model used data aggregated 

by geographical area, age group and year where each line of data represented a group 

of people for a geographical area, age group and year combination. Factors such as 

socioeconomic disadvantage and tertiary education status among others, could 

therefore not be determined at an individual scale for administrative and BOD data 
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modelled using ASRA_ST. Additionally, the same factors are not used for BOD data 

modelled using WMrP_ST. Fewer factors were used in the WMrP_ST model for BOD 

data as the addition of factors/interactions with the 18 age groups in BOD data created 

computational issues.  

2.3 Burden of disease data 

BOD data is modelled using both administrative data sourced from the WA Mortality 

Dataset and HMDC, and survey data from the HWSS. A full list of BOD data indicators 

included in the PHA can be viewed in the PHA Data Dictionary in the BOD section. 

Key measures reported for BOD data include YLL and YLD counts at the LGA, HD 

and HR geographical levels, YLL and YLD ASRs at the LGA, HD and HR geographical 

levels with associated 95% CIs presented at the LGA and HD levels only, and a 

‘Comparison to State’ measure at the LGA and HD levels only. The comparison to 

State measure is based on the EPs of the posterior draws to identify whether the YLL 

or YLD ASRs are higher, lower, or similar between the specific LGA/HD compared to 

the State. For more information on interpreting the comparison to State measure, 

please refer to Section 4.2.  

Additionally at the HR level, Disability Adjusted Life Years (DALY) counts, and ASRs 

are also reported. DALY counts/ASRs are the sum of associated YLL and YLD 

counts/ASRs. At the HR level, YLL, YLD and DALY counts of minor category 

diseases/conditions are presented in a pie chart as a percentage contribution to the 

total YLL, YLD or DALY count for the intermediate category of interest for the total 

population. For each HR and year, the leading ten conditions of YLL, YLD and DALY 

burden are also displayed in the PHA by sex, as both a count, percentage, and ASR 

(per 100,000). Additionally, the contribution (%) of total YLL, YLD and DALY burden 

is presented by disease groups (intermediate category) in a tree-map figure.  

Table 5 below outlines what measures for BOD data are displayed in the PHA by 

geographical level.  
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Table 5. Burden of disease data measures presented in the PHA by geographical 
level 
Geography 
Level Measures (by area, year, and sex) 

LGA 

Modelled YLL count with 95% CI 

YLL ASR with 95% CI  

Modelled YLD count with 95% CI  

YLD ASR with 95% CI  

Comparison to State (based on posterior draw EPs) 

HD 

Modelled YLL count with 95% CI 

YLL ASR with 95% CI 

Modelled YLD count with 95% CI 

YLD ASR with 95% CI 

Comparison to State (based on posterior draw EPs) 

HR 

Raw YLL count 

YLL ASR 

Contribution (%) of minor category diseases/conditions to overall 
YLL count for intermediate category of interest for total population 
(by area and year only) 

Leading 10 conditions of YLL burden (count (%) and ASR (per 
100,000) 

Contribution (%) of disease groups (intermediate categories) to 
overall YLL burden 

Raw YLD count 

YLD ASR 

Contribution (%) of minor category diseases/conditions to overall 
YLD count for intermediate category of interest for total population 
(by area and year only) 

Leading 10 conditions of YLD burden (count (%) and ASR (per 
100,000) 
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Contribution (%) of disease groups (intermediate categories) to 
overall YLD burden 

Raw DALY count 

DALY ASR  

Contribution (%) of minor category diseases/conditions to overall 
DALY count for intermediate category of interest for total 
population (by area and year only) 

Leading 10 conditions of DALY burden (count (%) and ASR (per 
100,000) 

Contribution (%) of disease groups (intermediate categories) to 
overall DALY burden 

 

For LGA and HD level data, two models were used to obtain measures: (i) ASRA_ST 

and (ii) WMrP_ST.  Model use was determined by the type of input data. For 

disease/conditions using administrative data the ASRA_ST model was used, and for 

survey data, WMrP_ST was used. Fitted counts obtained from the ASRA_ST model 

were then used to calculate YLL or YLD and fitted probabilities from the WMrP_ST 

model used to calculate YLD from survey data.  

Like administrative data, separate models were fit for males, females, and persons for 

each disease/condition for ASRA_ST models. WMrP_ST models however were fit to 

all data combined and subsequently the final estimates were calculated by sex. Note 

the ASRA_ST model used data aggregated by geographical area, age group and year 

where each line of data represented a group of people for a geographical area, age 

group and year combination; while WMrP_ST models used raw event level data where 

each record represented a person surveyed. The equations and output measures for 

both models are presented in Table 6.  
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Table 6. Burden of disease data model equations and output measures 
presented in PHA 

Model Equation 
Output measure in PHA (by 
area, year, and sex) 

ASRA_ST  

(YLL and YLD) 

log 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = log(𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖) + 𝛼𝛼

+  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜃𝜃𝑖𝑖
+ 𝛾𝛾𝑡𝑡 

Modelled YLL count with 95% 

CI and YLL ASR with 95% CI 

Modelled YLD count with 95% 

CI and YLD ASR with 95% CI 

YLL/YLD comparison to State 

WMrP_ST* 

(YLD using 
survey data only)  

𝑌𝑌𝑌𝑌𝐷𝐷𝑖𝑖𝑡𝑡
(𝑑𝑑) = ��𝑝̂𝑝𝑖𝑖𝑡𝑡𝑡𝑡

(𝑑𝑑)𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝ℎ𝑒𝑒ℎ
ℎα

 

Modelled YLD count with 95% 

CI and YLD ASR with 95% CI 

YLD comparison to State 

* In deriving YLD, a variety of event-level (i.e., individual record for those surveyed) 

and area-level fixed effect factors below are included in the modelling.  

• Event-level factors:  

 Age (in age group) 

 Sex 

• Area-level factors: 

 Remoteness (Note that HD level models do not have the remoteness 

factor) 

 Socio-economic disadvantage  

 Indigenous population proportion  

 Proportion of people with low income  

 Proportion of people with tertiary education 

Due to the large number of age groups required for age standardised YLD estimates, 

YLD WMrP_ST models did not have an age group and sex interaction as fixed effect 

factors but this was included as a random effect (unlike the HWSS WMrP_ST models 

which contained the age and sex term as fixed term factors, but not as a random 

effect). Fewer factors were used in the WMrP_ST model for BOD data as the addition 

of factors/interactions with the 18 age groups in BOD data created computational 
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issues. As such, the WMrP_ST BOD fixed effect factors were scaled back in 

comparison to the WMrP_ST model used for survey data. 

 

3. Convergence checks 

Convergence refers to the stabilisation of the Markov Chain Monte Carlo (MCMC) 

algorithm which estimates the posterior distribution of the Bayesian models by drawing 

a very large number of posterior draws. There are a wide range of MCMC algorithms, 

however the one used to run the Bayesian models in this instance are called random 

walk or Gibbs samplers.  

(For more on MCMC see: https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo). 

The values of two primary model diagnostic measures from each model were used to 

determine if a model had/had not converged in the first instance: (i) R-hat and (ii) 

Effective Sample Size (ESS).  

3.1 R-hat (𝑹𝑹�) 

• It is recommended to run multiple, independent MCMC algorithms for the same 

model, called chains. All models in this instance, were run with 4 independent 

chains. Each chain starts with a different set of initial parameter values. It can 

be ascertained if convergence is acceptable by comparing the behaviour of the 

posterior draws from the different chains.  

• 𝑅𝑅� compares the behaviour of the posterior draws from the different chains. Well 

behaved chains should converge to the same area of the parameter space 

regardless of the initial parameter values used.  

• Separate chains that converge to the same density are described as “mixing 

well”. 

• 𝑅𝑅� is calculated by taking the average of within-chain variances and comparing 

this to the variances of all the chains mixed together by taking the square root 

of the mixture variance divided by the average within-chain variance (Gelman 

& Shirley, 2011).  

• 𝑅𝑅� is always greater or equal to 1.  

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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• At convergence, the chains will have mixed, so that the distribution of the 

simulations between and within chains will be identical and the ratio 𝑅𝑅� should 

equal 1.  

• If 𝑅𝑅� is greater than 1, this implies that the chains have not fully mixed and that 

further simulation with an increased number of iterations might increase the 

precision. 

• An 𝑅𝑅� less than or equal to 1.01 was used as a cutoff to denote convergence as 

recommended by Vehtari et al. (2021).  

3.2 Effective Sample Size (ESS)  

• ESS considers the dependence in the posteriors and estimates the number of 

independent posterior draws. Ideally, we would like the posterior draws to be 

independent however given the nature of the Gibbs sampling method, not all 

posterior draws are independent.  

• A highly correlated or inefficient MCMC algorithm would give very low values of 

ESS, which can be artificially increased/improved by taking more posterior 

draws. 

• A crude rule of thumb, as recommended by rstan (Stan Development Team 

2022) and Hogg & Cramb (2022), is that all model parameters should have an 

ESS larger than the number of chains multiplied by 100. In this instance as each 

model was run with 4 independent chains, the recommended cut-off is to have 

an ESS larger than 400 for all model parameters. 

If 𝑅𝑅� and ESS values fell within the assigned cut-off values, further checks were 

performed on model outputs to determine if the modelled results were appropriate to 

include in the PHA. 

This included:  

1. Assessing trace plots of the posterior draws of model parameters 

2. Comparing observed counts/rates to the modelled/fitted counts/rates to see 

if the modelled results were plausible 

3. Assessing residual plots to examine the relationship between standardised 

residuals of the posterior and the fitted values, to ensure there are no 

systematic patterns in the residuals   
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4. Sensitivity analysis to compare priors/hyperpriors1 to ensure the posterior 

distribution is similar regardless of prior/hyperprior choices 

5. Posterior predictive checks to determine model fit 

If convergence was not achieved, the following steps were taken to improve 

convergence:  

1. Increase number of iterations (i.e., run the algorithm for longer) 

• Models were initially run at 100,000 iterations, if the model did not converge, 

iterations were increased to 200,000, and subsequently 300,000 etc. until 

convergence was reached 

2. Increase the number of iterations to discard at the start of chains (i.e., burn-in2)  

3. Increase the level of thinning  

• Thinning was set to achieve at least ~10,000 usable draws i.e., if running a 

model with 100,000 iterations, thinning was set to 10 (i.e., every 10th draw 

 
1 In Bayesian statistics a hyperprior is a prior distribution placed on the hyperparameters of a 
hierarchical model. Hierarchical models are a type of Bayesian model where parameters of the model 
are themselves random variables with their own distributions. Hyperparameters are parameters of the 
prior distributions e.g., if a model parameter is assumed to follow a normal distribution, the mean and 
variance of the normal distribution are its hyperparameters.  
 
Hyperpriors are used to express uncertainty about the hyperparameters themselves. Instead of fixing 
hyperparameters to specific values, which might introduce bias or overconfidence in the model, 
hyperpriors allow these hyperparameters to vary according to another probability distribution. This 
approach is particularly useful when there is little prior knowledge about the hyperparameters or when 
one wishes to remain as noncommittal as possible regarding their values. Hyperpriors are therefore a 
powerful tool in Bayesian modelling, offering a way to incorporate uncertainty at multiple levels of the 
model. They enable analysts to build more flexible and robust models that can better capture the 
complexities of real-world data. 
 
2 In a Bayesian model, we are often mainly interested in the posterior distribution, as it describes our 
knowledge about the parameters of interest given our priors and after having seen the data.  

Often this posterior distribution is not tractable analytically, but we can still sample from it. Based on, 
e.g., the average of the samples, we can then approximate a posterior mean of the parameters. This is 
often done with so called Markov chain Monte Carlo (MCMC) methods used for this project. The idea 
is to devise a strategy of sampling such that, when producing draws via this chain, these draws will be 
"almost" draws from the posterior distribution from which we want to sample (if we can directly sample 
from the posterior distribution, we will do so, but often, that is not possible) provided the chain has run 
long enough. 

So, to make sure that it has run "long enough" we discard the initial draws - the burn ins - that may still 
be affected by where we initialised the chain and hence not yet be "trustworthy" draws from "almost" 
the posterior distribution. 
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kept, resulting in 10,000 usable draws. If running model with 200,000 

iterations, thinning was set to 20 etc.)  

4. Increase the frequency of the MCMC algorithms automatic adaption phase (i.e., 

the step size for sampling)  

5. Reducing the complexity of models by removing the space-time interaction term 

(this interaction term was not included for all ASRA_ST models) 

If all attempts to improve convergence as outlined above failed, and a model for an 

individual disease/condition did not converge, the disease/condition was excluded 

from the PHA and therefore not shown in the drop-down disease/condition list. Its 

counts were however rolled up into the disease major category and still included at the 

major category level. For further information and examples of non-convergence vs 

convergence, please refer to the deliverable document by Hogg & Cramb (2022).  

 

4. Interpreting model output  

4.1 Credible intervals 

In Bayesian statistics, credible intervals (CIs) are a way to quantify the uncertainty or 

variability in the estimates of unknown parameters. Unlike frequentist confidence 

intervals, which are based on the long-run behaviour of repeated sampling, Bayesian 

CIs are derived from the posterior distribution of the parameter, which represents our 

updated knowledge about the parameter after considering the observed data and any 

prior information.  

To understand CIs, suppose we have a Bayesian model where we are interested in 

estimating the mean (μ) of a population. We have some prior belief about the possible 

values of μ, which is expressed as a prior distribution. After collecting data, we update 

our knowledge about μ and obtain the posterior distribution, which incorporates both 

the prior distribution and the observed data (Figure 1).  
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Figure 1. The relationship between Bayesian prior distribution, the data, and the 
posterior distribution (Matthews, 2001). 

A CI is a range of values from the posterior distribution that is associated with a certain 

degree of credibility or probability. It represents a range of plausible values for the 

parameter, given the data and the prior information. For example, a 95% CI is 

constructed such that it contains the true parameter value with a probability of 0.95. 

(See a comparison of traditional 95% confidence interval vs. Bayesian 95% credible 

interval in https://www.statsdirect.com/help/basics/confidence_interval.htm). 

The construction of CIs involves determining the limits of the interval based on the 

probability density of the posterior distribution ascertained from the MCMC algorithms. 

The Bayesian models used by the Department of Health uses the Highest Density 

Interval (HDI), which constructs the CI to contain the highest density. This is a 

pragmatic method for skewed distributions (Figure 2).  

 

Figure 2. Credible Interval (red vertical lines) constructed using Highest Density 
Interval. The median is indicated by the blue line (Hogg & Cramb, 2022). 

https://www.statsdirect.com/help/basics/confidence_interval.htm
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It's important to note that credible intervals (CIs) in Bayesian analysis, unlike 

frequentist statistics, measure uncertainty using available data and prior information, 

and are not based on repeated sampling. CIs offer a probabilistic assessment of a 

parameter's plausible values, influenced by the choice of prior distribution, and 

facilitate decision-making based on the entire posterior distribution rather than just 

point estimates.  

Figure 3 shows the estimated ASRs and credible intervals for age standardised 

potentially preventable hospitalisation rates by health districts in WA. The length of the 

bar represents the ASR and the two whiskers, the lower and upper credible intervals. 

The wider the credible interval range, the more uncertain the ASR estimate, meaning 

the ASR for the area is less reliable compared to other areas. (Note that the darker 

the bar, the higher the ASR). Usually, areas with smaller populations have more 

uncertainty in their rates, often resulting in wider credible interval ranges. For example, 

as shown in Figure 3, the CI width from a small population area like Southern 

Wheatbelt is wider than that for an area with large population like Inner South, 

especially if their rate estimates are similar. 

 

Figure 3. Comparison of credible Intervals for ASR by health district in WA in 
PHA. 
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4.2 Comparison to State  

For all data types (administrative, survey and BOD data) the comparison to State value 

(higher/lower/similar) for LGAs and HDs is determined from the exceedance 

probabilities (EPs). This is the probability of the posterior draws being above a certain 

value.  This was derived from the posterior draws using:  

𝐸𝐸𝐸𝐸 =  
1
𝐷𝐷
�  𝐼𝐼�𝜃𝜃(𝑑𝑑) > 𝑐𝑐�
𝑑𝑑

 

Where 𝐼𝐼�𝜃𝜃(𝑑𝑑) > 𝑐𝑐� is equal to 1 if 𝜃𝜃(𝑑𝑑) is larger than the baseline value 𝑐𝑐 and zero if 

𝜃𝜃(𝑑𝑑) is smaller than 𝑐𝑐 (Hogg & Cramb, 2022). The EP was used to indicate whether 

the ASR, prevalence, age standardised YLL or age standardised YLD in a particular 

area is significantly higher than the state measure. EP values above 0.8 (i.e., 80% of 

the posterior) were considered likely to be above the state value and therefore ‘higher’. 

Values below 0.2 (i.e., 20% of the posterior) on the other hand were considered likely 

to be below the state value and therefore ‘lower’. Values between 0.2 and 0.8 were 

then considered to be ‘similar’ to the state rate.  

For HR level data however, where Bayesian modelling was not used, the comparison 

to State value was determined differently for each of the data types as detailed below.  

Administrative Data:  

• Comparison to State value was determined by analysing the 95% confidence 

interval of the SRR for the HR of interest with the State.  

• SRR is the ratio of observed disease/condition counts to expected 

disease/condition counts.  

𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =  
∑𝑦𝑦
∑𝐸𝐸

 

Where 𝑦𝑦 is the observed disease/condition counts in a particular HR, and 𝐸𝐸 

(expected counts) is the state rate multiplied by the HR population.  

• An SRR greater than 1 therefore indicates that the HR rate is higher; an SRR lower 

than 1 indicates the HR rate is lower.  

• To determine the appropriate value for the comparison to State, the 95% 

confidence intervals were used to ensure the difference was significant.  
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 If the SRR lower confidence interval value was greater than 1, then the HR rate 

was significantly higher than the State. 

 If the SRR upper confidence interval value was less than 1, then the HR rate 

was significantly lower than the State.  

 If the SRR confidence interval included 1 in its range, the HR rate was similar 

to the State.  

 

Please note, the term SRR is used in this document for the sake of simplicity in 

describing this type of measure; and the estimation of similar measures such as 

standardised incidence ratio (e.g., for cancer incidence) or standardised mortality ratio 

(e.g., death data) will follow the identical process as for SRR.   

 
Survey data:  

• Comparison to State value was determined by analysing the 95% confidence 

interval of the prevalence for the HR of interest with the State.  

 If the prevalence lower confidence interval value was greater than 1, then the 

HR prevalence was significantly higher than the State. 

 If the prevalence upper confidence interval value was less than 1, then the HR 

prevalence was significantly lower than the State.  

 If the prevalence confidence interval included 1 in its range, the HR prevalence 

was similar to the State.  

 

Burden of disease data:  

• A comparison to State measure is not presented in the PHA for BOD data at the 

HR level. 
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5. Advantages of modelled data over raw unmodelled data 

Modelled estimates for LGAs and HDs include estimated count, age group specific 

rate, age standardised rate, and prevalence. Important note: Modelled data are 

estimates only and are not actual counts, rates, or prevalence. Caution should 

therefore be exercised when using the modelled data. 

There are several benefits of using modelled data. Firstly, modelled measures can be 

more stable compared to raw measures, particularly in areas with small counts and/or 

populations. Figure 4 shows a comparison of three prevalence measures (raw, 

modelled, and state prevalence) of adults who drink alcohol at levels that increase the 

risk of long-term harm for a particular LGA from 2011-2020. The modelled prevalence 

(red) is a ‘smoothed’ version of the raw prevalence (green). Overall heterogeneity in 

modelled estimates were reduced, depicting a similar trend to the State prevalence 

(blue). Additionally, the modelled prevalence had increased stability and certainty 

compared to the raw data as indicated by the narrower CIs for the modelled data 

compared to the wider confidence intervals observed in the raw data. This increased 

stability, mitigates the need for data suppression due to small counts or unreliable 

estimates. It also enables data users to observe clearer trends over time thereby 

contributing to a more comprehensive and insightful set of results.  

 

 

Figure 4. Raw, modelled, and state prevalence for long-term alcohol related 
harm in a WA LGA from 2011-2020. 
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To further highlight the capabilities of Bayesian methods, Figure 5 illustrates a 

comparison in data coverage in ASRs for hospitalisations due to injury and poisoning 

across WA LGAs before and after applying Bayesian methods. When mapping the 

raw data, Figure 5(a) shows there are several gaps in data coverage (i.e., not 

reportable ASRs) primarily due to small event counts and/or small population sizes. 

Conversely, mapping the modelled data using Bayesian methods, Figure 5(b) shows 

complete coverage, leaving no data gaps across WA.  

Figure 5. Data coverage across WA LGAs before (a) and after (b) using Bayesian 
methods to estimate ASRs for hospitalisations due to accidental falls in 2019. 

 

6. Disadvantages and limitations 

All statistical analysis methods come with disadvantages and limitations. Bayesian 

modelling methods and processes are no exception. 

A key disadvantage of Bayesian modelling using MCMC, is that it requires a large 

amount of computational power and human resources. Some models such as 

WMrP_ST may take several days to run on a laptop computer. This can be particularly 

time consuming if there are many diseases/conditions where modelling is required as 

separate models will need to be run for each disease/condition and sub-category of 

interest i.e., separate models will need to be run for a particular major category and 

similarly if the disease/condition is further broken down by intermediate and minor 

 
 

 

a) b) 
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categories. Additionally separate models will need to be run for each of the sex 

categories (male, female, total). In some instances, models may need to be rerun 

several times after adjusting model parameters through trial and error (as described 

in Section 3) to reach convergence which can also be a time-consuming process.  To 

improve efficiency, it is beneficial to run multiple models simultaneously, which 

requires the use of a high-performance computer (HPC) however access to such 

resources may be limited due to accessibility and/or cost. In addition to running several 

models, analysts tasked with producing Bayesian estimates, must also have some 

level of understanding of Bayesian modelling methods and processes, R software and 

HPC use/language. This requires a significant investment in human resources in terms 

of time and funding to train analysts.  

The modelling itself also comes with some limitations in that the priors used in the 

models for the spatio-temporal terms in this project, potentially smooth over all 

adjacent areas and time points, with the extent of smoothing determined by the data 

itself. This may lead to rate estimates for individual years being all above or all below 

the actual state rate estimate, particularly where the state rate fluctuates distinctly 

between years, as shown in Figure 6, however the smoothed stable estimate is a 

desirable outcome as it allows estimation of the underlying “real” rate.    

 

 

Figure 6. Modelled rate estimates by health district (black dots) and raw state rate 
estimates (blue). The raw rate fluctuates clearly from 2017 to 2019, with model 
smoothing giving 2018 health district estimates lower than the state raw rate.   
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The spatial priors used in this process have previously been shown to work well in the 

Australian context (Cramb et al., 2020) however, if discontinuities in rates between 

adjacent areas are expected, alternative smoothing priors that allow for large 

differences in rates between neighbours are needed. While many priors that allow 

discontinuities are available, these have resulted in convergence difficulties for certain 

areas when used with sparse Australian health data (Cramb et al., 2020), so were not 

considered for this project.   

While it is important to acknowledge these disadvantages and limitations, the benefits 

of producing Bayesian modelled data, outweigh its potential downfalls. The modelled 

estimates allow for a more complete picture of population health outcomes and trends 

across WA to be observed which in turn, provides essential epidemiological measures 

to inform public health planning, policy, and decision making that would otherwise not 

be available.  
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7. Further information 

Bayesian modelling project Deliverable 2: Modelling recommendations 

https://www.health.wa.gov.au/~/media/Corp/Documents/Health-for/Population-
health/Bayesian-modelling-project-Deliverable-2---Modelling-recommendations.pdf 

Publication: ‘Improving the spatial and temporal resolution of burden of 
disease measures with Bayesian models’ 

Hogg, J., Staples, K., Davis, A., Cramb, S., Patterson, C., Kirkland, L., Gourley, M., 

Xiao, J., & Sun, W. (2024). Improving the spatial and temporal resolution of burden 

of disease measures with Bayesian models. Spatial and Spatio-temporal 

Epidemiology, 49, 100663. https://doi.org/10.1016/j.sste.2024.100663.  

Australian Cancer Atlas 

The Australian Cancer Atlas (https://atlas.cancer.org.au/) has detailed information on 

how the Bayesian modelling is conducted and how output from the models is 

interpreted. The methodological document (Duncan et al, 2020) is a useful reference.  

https://www.health.wa.gov.au/%7E/media/Corp/Documents/Health-for/Population-health/Bayesian-modelling-project-Deliverable-2---Modelling-recommendations.pdf
https://www.health.wa.gov.au/%7E/media/Corp/Documents/Health-for/Population-health/Bayesian-modelling-project-Deliverable-2---Modelling-recommendations.pdf
https://doi.org/10.1016/j.sste.2024.100663
https://atlas.cancer.org.au/
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Appendix 

Table A1. Legend for notations used in equations  

Notation Description 

𝜇𝜇𝑖𝑖𝑖𝑖 Fitted value for area (i) and year (t) 

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 Fitted value for area (i), year (t), and age (a) 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 Population for area (i), year (t), and age (a) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 The design matrix of indicators for area (i), year (t), and age (a) 

𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗 Fixed effect design matrix for survey weights 

𝑌𝑌𝑌𝑌𝐷𝐷𝑖𝑖𝑡𝑡
(𝑑𝑑) Years Lived with Disability for area (i) and year (t) for 𝑑𝑑th posterior draw  

𝐸𝐸𝑖𝑖𝑖𝑖 Expected counts for area (i) and year (t) 

�
α

 
Sum across age groups  

�
ℎ

 
Sum across health states 

�𝑦𝑦 
Sum of observed disease/condition counts 

�𝐸𝐸 
Sum of expected disease/condition counts 

𝑝̂𝑝𝑖𝑖𝑡𝑡𝑡𝑡
(𝑑𝑑) Proportion of people in area (i), year (t), and age group (a) for 𝑑𝑑th posterior draw 

𝑝𝑝ℎ Proportion of all persons with the condition that are in health state ℎ 

𝑒𝑒ℎ Health state specific disability weight 

𝛽𝛽 Coefficients for fixed effects 

𝜃𝜃𝑖𝑖 Combined spatial random effects 

𝛾𝛾𝑡𝑡 Temporal random effects 

𝛿𝛿𝑖𝑖𝑖𝑖 Space-time random effects 

𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 Probability for survey weights 

𝛼𝛼 Intercept 

𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 Standardised Rate Ratio at the Health Region geographical level 

D Total number of posterior draws 

�
𝑑𝑑

 
Sum of posterior draws 

I 
Identity function (I is equal to 1 if �𝜃𝜃(𝑑𝑑) > 𝑐𝑐� is true, or equal to 0 if �𝜃𝜃(𝑑𝑑) > 𝑐𝑐� is false) 

𝜃𝜃(𝑑𝑑) dth posterior draw of theta 

c Baseline value 
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